Low-rank Approximations for Computing Observation Impact in 4D-Var Data Assimilation

نویسندگان

  • Alexandru Cioaca
  • Adrian Sandu
چکیده

We present an efficient computational framework to quantify the impact of individual observations in four dimensional variational data assimilation. The proposed methodology uses first and second order adjoint sensitivity analysis, together with matrix-free algorithms to obtain low-rank approximations of observation impact matrix. We illustrate the application of this methodology to important applications such as data pruning and the identification of faulty sensors for a two dimensional shallow water test system. Preprint submitted to Elsevier May 11, 2014

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

A four-dimensional ensemble variational (4D-EnVar) data assimilation has been developed for a limited area model. The integration of tangent linear and adjoint models, as applied in standard 4D-Var, is replaced with the use of an ensemble of non-linear model states to estimate fourdimensional background error covariances over the assimilation time window. The computational costs for 4D-En-Var a...

متن کامل

Reduced-order Observation Sensitivity in 4d-var Data Assimilation

Observation sensitivity techniques have been initially developed in the context of 3D-Var data assimilation for applications to targeted observations (Baker and Daley 2000, Doerenbecher and Bergot 2001). Adjoint-based methods are currently implemented in NWP to monitor the observation impact on analysis and short-range forecasts (Fourrié et al. 2002, Langland and Baker 2004, Zhu and Gelaro 2008...

متن کامل

Implementation of 1D+4D-Var Assimilation of Precipitation Affected Microwave Radiances at ECMWF, Part I: 1D-Var

This paper presents the operational implementation of a 1D+4D-Var assimilation system of rain affected satellite observations at ECMWF. The first part describes the methodology and performance analysis of the 1D-Var retrieval scheme in clouds and precipitation that uses SSM/I microwave radiance observations for the estimation of total column water vapor. The second part shows the global and lon...

متن کامل

Ensemble Kalman Filter: Current Status and Potential

In this chapter we give an introduction to different types of Ensemble Kalman filter, describe the Local Ensemble Transform Kalman Filter (LETKF) as a representative prototype of these methods, and several examples of how advanced properties and applications that have been developed and explored for 4D-Var (four-dimensional variational assimilation) can be adapted to the LETKF without requiring...

متن کامل

On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation

The equations of the forecast sensitivity to observations and to the background estimate in a fourdimensional variational data assimilation system (4D-Var DAS) are derived from the first-order optimality condition in unconstrained minimization. Estimation of the impact of uncertainties in the specification of the error statistics is considered by evaluating the sensitivity to the observation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014